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Thus 7, the time to engagement, is
T=(GH+V,T,—L,)/V, (12)

The time to engagement for the attacking fighter 77 must
equal 7T to insure interdiction, where

T"=(R-X)/V, (13)

Because of the trigonometric functions involved in the
computations, the function

SR')=T-T" 14

was formed and solved for R’ by the regular falsi method?
using a Wang 2200 to perform the repetitive calculations.
Equations (4-14) were computed in turn for each pass. Since
the AEW aircraft flees toward point A4, the above calculations
were computed within a loop of successive values of D=D",
‘formed by

D/{=D-V;-(T,-T),) (15)

where T; is obtained from Eq. (12). Computations ceased

i

when successive values of D’ differed by less than 1 mile
ID;,,—D/l < =1.0 (16)

Both Eqgs. (14) and (16) are smooth valued and well formed
in the region of interest: 7 greater than 7,. Following final
solution of Eq. (14) the required radar range R was calculated
by the law of cosines from triangle ABC

R=[D?+AC?~2-D-AC-cos(A))]1" (17

The DLI response is obtained by setting S (BARCAP
station range) equal to zero, 7, is then the DLI alert status.
For the DLI response the solution to Eq. (3) is denoted by

. R,(B), indicating a DLI response (R,) to a bomber (B) at-
tack. Similarly the solution to Eq. (17) is represented by
R,(F), indicating a DLI response to a fighter attack (F). R,(B)
and R,(F) represent solutions to Eqgs. (3) and (17), respec-
tively, indicating a BARCAP response (R;) to the same type
of attack.

Results

In spite of the differences in geometry between this Note
and that of Ref. 1, there is considerable agreement in the
general trend and direction of comparable parameters. The
most significant difference is in the relationship between the
AEW radar range and the attacking fighter’s velocity.
Reference 1 indicates a concave downward function for the
DLI comparable solution. This would imply that at some
point the required radar range would reach a maximum and
then decrease for even greater values of attacking fighter
velocity. The present case (Fig. 3) indicates a monotonically
increasing function for both the DLLI and BARCAP response,
as would be expected.

In the majority of scenarios examined by the author (Table
1), the three most significant factors requiring the largest
minimum radar ranges were attacking fighter velocity, at-
tacking bomber velocity, and standoff weapon launch range.
Figures 3 and 4 depict these parameters and clearly indicate
the DLI response is of major importance in minimum radar
range design requirements.
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Introduction

N a fully evolved spin, the aircraft’s center of gravity (c.g.)

follows a descending helical path about the spin axis. This
Note pertains to the aircraft’s orientation relative to that
helix, as well as the geometric and kinematic effects of the
spin on the local velocity vector. Using flight test data for a
low-wing general aviation aircraft,! this Note presents results
pertaining to aircraft orientation, flow patterns, and the
aerodynamic driving mechanisms in a steady-state spin.

The Kinematic Equations

It is assumed that the aircraft is in a steady-state spin with
spin rate {2, spin radius R, vertical velocity w_, , and Euler
attitude angles 6, ¢, and ¥ —9 given (Fig. 1). Coordinates of
the aircraft’s configuration are referred to the c¢.g. location
along the conventional Cartesian system (x, y, and z).
Referring to Fig. 1, it can be shown? that the orthogonal
body-axis velocity components of any point p on the aircraft
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Fig. 1 Spin geometry.
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Table1 Spin characteristics
Tail configuration
(spin no.)
2 3 da 4b 6
., deg 55 60 51 68 62
Veg.»m/s 35.2 34.4 37.9 29.3 33.7
W, ,M/sd 33.7 32.9 36.4 27.8 32.2
Q. deg/s 155 159 157 209 167
0, deg ~43.1 -39.0 —45.0 -27.7 -37.2
¢, deg 5.10 3.23 7.25 1.24 3.01
(¥—1n), deg 116 120 107 107 121
R;,m 3.7 3.6 3.9 2.5 3.4
p, roll rate, deg/s 106 100 111 97 101
g, pitch rate, deg/s 10 7 14 97 101
r, yaw rate, deg/s 112 124 110 185 133
awclg_ =V —1.5m/s.
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Fig. 3 Vertical projection. a) Contours of constant ¥, m/s.

Fig. 2 Horizontal projection. 2) Contours of constant V, m/s.
b) Contours of constant «, deg. ¢) Contours of constant 3, deg.

b) Contours of constant «, deg. ¢) Contours of constant 3, deg.
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are:
Up, =QcosO[ R cos (Y —n) —ygcosd
+zgsin(¥—n)] —~w,, sinf |
v,, =QR, [singsinfcos (Y —n) —cosgsin (¥ —1)]
+{x ycospcost + Qzgsinf + w, , sindcosd
Wpp = QR [cos¢sin0cos(¢;n) +singsin{y —n) ]

—Qxpsingcosd — Oy gsind + w , cospeost (1)

and the corresponding polar-coordinate representations are,

V (uf,B+vf,B+wf,B)V2

o = {

By
Aircraft Orientation

Data for five spin modes resulting from various tail
modifications are given in Ref. 3. Flight variables referenced
to the c.g. are presented in Table 1. The variables ¢ and ¢ are
found from:

tan—’(wa/upB) )

sin —/ (va 2%

6=sin~/(—-p/Q) o=tan ' (q/r) ?3)
R, isfound by: R;=vV?~wl, (1/9). V and «, are given,
and ¢—n is found numerically. These values also are
presented in Table 1.

Referring to Table 1, it is found that i — 5 is greater than 90
deg for all spin modes: i.e., the aircraft’s nose not only points
toward the center of the spin, but lags behind it even though
B, 1s considerably smaller than ¥ —#. The velocity in the
horizontal direction v, (Fig. 1) is much less than the vertical
velocity w, ; therefore, the primary motion is downward,
not circular, and the results are consistent. (Similar results are
presented for high-performance aircraft in Ref. 4.) The spin
radii R, is within the wing span, as might be anticipated.’

Geometric Description of the Flow

Given the data of Table 1 and the equations derived above,
it is possible to plot contours of constant V, «, and 8 over
the aircraft, such as those shown in Figs. 2 and 3. It should be
realized when viewing these figures that the airplane is
pitched, rolled, and yawed with respect to the inertial frame;
consequently, the distributions of V, «, and 8 are somewhat
complex.

The location of the center of the spin relative to the aircraft
is inferred from the velocity magnitude distribution (Fig. 2a):
the nonzero roll angle causes the deviation of the velocity
curves from perfect circles. The pitch angle has a major effect
on distributions in the aircraft’s vertical plane (Fig. 3). The
direction of the spin (Fig. 2a) is clockwise about the spin axis.
The velocity ranges from about 28 m/s at the nose in spin 4b
to about 42 m/s at the tail in spin 4a.

Lines of constant o are almost parallel to the fuselage and
range in value from about 35 deg at the left wingtip in spin 4b
to greater than 90 deg at the right wingtip in spin 4a. The very
large variation of o over the wing span causes a large
variation in lift and, therefore, in induced drag: the drag on
the right (retreating) wing is much greater than on the left
(advancing) wing. There is little variation of « in the vertical
plane (Fig. 2b).

Lines of constant 3 are nearly perpendicular to the fuselage
(Fig. 2¢), and range from about —35 deg at the tail in spin 4b
to about — 5 deg at the nose in all the spins. The flow over the
vertical tail tends to oppose the spin; however, at the very high
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angles of attack involved, the tail’s restoring moment could be
reduced by interference in the flow from the wings and
fuselage. There is a large 8 variation in the vertical plane (Fig.
3c).

Driving Mechanism

A rudimentary application of strip theory! suggests that the
driving mechanism for the spin is the differential induced drag
on the aircraft’s wings. For the analysis, it was assumed that
the flow was two-dimensional and that the only significant
contributions to the forces and moments came from the
wings, horizontal tail, and vertical tail.

As mentioned above, the retreating wing is at a higher angle
of attack and therefore has a higher induced drag than the
advancing wing. This is what drives the spin. Opposing the
spin is the side force (acting through a moment arm about the
center of gravity) on the vertical tail. This result is consistent
with the qualitative guidance provided by Ref. 5.

Conclusions

This Note has presented a preliminary analysis of the
geometric properties of a fully evolved spin and their effects
on the flowfield about a general aviation aircraft. The results
could form the basis for an analytical study of the forces and
moments acting on a spinning aircraft, and they provide
insights regarding the underlying causes of the spin.
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Errata

Réply by Author to P. R. Payne

J. A. C. Kentfield*
University of Calgary, Calgary, Alberta, Canada
[J. Aircraft, 17, 544 (1980)]

HE references cited in the first paragraph are incorrect.
Reference 6 should be Ref. 7 and Ref. 7 should be Ref. 8.
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